Reactor 3

the Reactive foundation for
the JYM

[Pivotal. @SimonPasle

Who Here Uses...

Java 8

Java 8

RxJava

Java 8

RxJava

Reactive Streams

Who FHere Thinks...

a fork of Atom edilor

a fork of Atom edilor

a new Spring project

a fork of Atom edilor

a new Spring project

some Asynchronous siuff

a fork of Atom edilor

a new Spring project
some Asynchronous siuff

end-of-day conf slot is best for naps?

Reactive

Programming

101

Reactive

Programming

101

Reacltor 3

typess
operators

Reactive

Programming

101

Reacltor 3

typess
operators

backpressure

and

other beasts

Teactive Reactor 3
101 tyRes :

operators

backp[:awre
other beasts
; ml.
debugging

Reactive Reactor 3

Programming

types:
101 operators
Reactor backp[:awre
and Spl’i ng other beasts
lesting

debumgging

Reactive Reactor 3

Programming

reaclor-neity types s
101 operators
reaclor-hkafka...
Reactor backpegpure
and Spring other beasts

lesting
debugging

Reactive Programming 101

what does it bring to the table?

WhHY?

sync/blocking

main thread processing

resumes
/10

| app does
nothing

sync/blockmg
/ /”

main thread processing

resumes

async & blocking

main thread vﬁ,C@ﬁﬂp&@X wait &
e > 5 -
threads, !

costly > >

& blocking

)

! 77 fdi

e % /'{ 2
, /.
et) fc@ A /
. A) 1 ?/ .
2 W 5 °

.) S

. L.t

.

| complex waits

main thread I | d I
_______ join
I new | > > o

threads,

c@gﬂy > >

async & nonblocking

q’\. n bl -
y, \in non- ocking

p?@ce%smg(“‘event loop” -
/Chu nks

’ S~ -A
no more threads

than needed

how do you achieve that
without losing your mind ?

Reactive Progsramming

composing @synchronous
s event-based sequences,
using non-blocking operators

without sacrifice

Pull?

Pulz Push’/

Pull? Push!
(or actually a little bit of Both)

Publisher

Subscriber

Data in Fflux

produces consumes

push events

produces consumes

push events

interfaces from
Reactive Streams
spec

produces consumes

push events

Subscriber<T>

onNext(T)
onComplete();
onError(Throwable);

0O..N elements
produces consumes

feedback ——

produces consumes

push events

VOLUME ©

® F 4

backpressure

produces consumes

push events

6 6 can |l have an

P API though?

produces consumes

push events

Reactor 3

types and operators

Flux<Il>
for 0..N elements

These are items emitted by This vertical line indicates thal the Flux

the Flux. has completed successiully.
This is the timeline of the
HEEE — O @—0—0—0—0——
to nﬂht]] u [] L " ¥
Y ¥ Y Y b y L Thesa dotted lnas and this box

appliad 16 the Flux, The taxt ingida the
box shows the nature of the
translormation.

‘ : indicate that a transformation is being
operator

A v

i
Y
This Fhux is the regult
of the transiormation. . . . ;(>
If for some reason the Flux terminates

abnormally, with an error, the vertical ling is
replaced by an X,

(ST .- - -

Mono<I>
for at most 1 element

This is the timeline of the
Moo, Tirme flows rom
left to right,

This Maono is the
resui af thi
Iransiormation,

This is the eventual item
emitted by the Mono.,

o— 2

Y Y
operator
i Y

o—x o

Iif for some reason the Mono terminates
abreormnally, with an error, the warecal ling s
replaced by an X.

This vartical line indicalas thal the Moo
has complated sutcassiully.

Thasa dotted lnas and this box
indicaie that a transformation is baing
applied 1o tha Mand. The taxt inside
tha box shows the nature of thae
translormation.

Reactive Streams
all the way

focuson Java S

focuson Java S
Duration, Completablefulure, Streams

Flux Mono onerator
generator P

nothing
happens
until you
subscribe

operator

operator

Flux/ Mono J
gsenerator

)

nothing
happens
until you

T subscribe
)

N

per
} Subscription

T state

} Sub
}

Flux/ Mono
gsenerator

)

data
flows

Subscriber

Flux/ Mono
gsenerator

examples

|
|

request(int.max)
O R
..‘.--------.....
*______-_----
.‘.............

buffer()

@000~

Flux.range(5, 3)
.map(i -> i + 3)
filter(i -> 1 % 2 == 0)
.buffer(3)

|
|

OO
M~ o
O O

8,10] |

HTTP reactive

Publisher from
client

- v

1

'
|

'
|

-

............... '_.
............... '_..
. mupsenbas |

b
ki Osqrosqns ~ 5
................. o ¢
............... 4
............... .'_..
............... .'_..
..... (u)asenbau

{)2quiosgns

N\ /
VS

HTTP reactive

Publisher from
client

- v

=

HTTP reactive

Publisher from
client

resubscribe

Subscriber

1

'
|
|

-

co DFEPER!
async sub-processes with flatMap

flatMap(user -> tweetStream(user))

A O @— 1

flatMap(user -> tweetStream(user))

Lo o)
&/

- &

flatMap(user -> tweetStream(user))

o0
&

et Wanto Waaia) aaae o
L Y R [

flatMap(user -> tweetStream(user))

o0 oo o o o0 . >
L PR &

o by falling back: Flux#onErrorReturn, Flux#onErrorResumelith
= ...but from a Mono: Mono#otherwiseReturn, Mono#otherwise
o by retrying: retry
= __triggered by a companion control Flux: retryWhen
© by switching to another Flux depending on the error type: switchOnError
* | want to deal with backpressure "enurs"[7l...

© by throwing a special IllegalStateException: Flux#onBackpressureError

o by dropping excess values: Flux#tonBackpressureDrop
= __except the last one seen: Flux#onBackpressurelLatest
o by buffering excess values (bounded or bounded): Flux#onBackpressureBuffer

= ._.and applying a strategy when bounded buffer also overflows: Flux#tonBackpressureBuffer with a

BufferOverflowStrategy

5.6. Time

* | want to associate emissions with a timing (Tuple2<Long, T»)measured...

© since subscription: elapsed

o since the dawn of time (well, computer time): timestamp

* | want my sequence to be interrupted if there’s too much delay between emissions: timeout
* | want to get ticks from a clock, regular time intervals: Flux#interval
* | want to introduce a delay...

© between each onNext signal: delay

o before the subscription happens: delaysubscription

5.7. Splitting a Flux
* | wantto split a Flux<T> into a Flux<Flux<T>>, by a boundary criteria...
o of size: window(int)
= ...with overlapping or dropping windows: window(int, int)
o of time window(Duration)
= __with overlapping or dropping windows: window(Duration, Duration)

o of size OR time (window closes when count is reached or timeout elapsed): window(int, Duration)

& much
more...

“elements of functional
progsramming”

BACKPRESSURE

push data as fast as possible

Subscriber

Publisher

subscribe

———————————— Subscriber

with small request
(eg. 1)

Subscriber

request more
(eg. 2)

2 onNext

9 ¢
v &K -
— —

~—-—- -——__—

VOLUME *
® F 3

7o iy

backpressure

macro FUSION
avoids unnecessary request back-and-forth

micro FUSION
share internal structures for less allocation

ing .

Athread

lkeactor

is
agnostic

however it
facilitates awitchi

Schedulers

Schedulers
elastic, parallel, single, timer-...

publishOn
switch rest of the flux on a thread

subscribeOn
malie the subacription and request happen
on a particular thread

Flux/ Mono operator sub
senerator

subscribeO S

operator Sub

publishOn Sub

operator Sub

Dperator Sub SlleCl’iber

Flux/Mono |
gsenerator

operator

subscribe
On

operator

publish
(D] {]

operator

operator

Subscriber

Flux/Mono | operator Sub

generator .

subscribeO i

—

operator Sub

Subscriber

Flux/Mono | operator
gsenerator

subscribe©O

operator

publishOn

operator

operator

Sub

Sub

Sub

Sub

Sub

Sub

Subscriber

Flux/Mono | operator sub

gsenerator —‘

subscribe©O Sub
n
]
operator Sub
.
publishOn Sub
.
operator Sub
.

Dperator Sub & SUDSCI’i DEI’

Flux/Mono |
gsenerator

operator

Sub

operator

publishOn

operator

operator

Sub

Sub

Sub

Sub

Subscriber

Testing & Debugging

in an asynchronous world

Testing a Publisher
StepVerifier

Testing a Publisher
with Virtual Time supportl

Simulate a source
TestPublisher

Debugging Issues
stacktraces get hard to- decipher

usually just show
where Subacription happens

java.lang.IndexOutOfBoundsException: Source emitted more than one item

at reactor.core.publisher.MonoSingle$SingleSubscriber.onNext(MonoSingle.java:120)

at
reactor.core.publisher.FluxOnAssembly$0OnAssemblySubscriber.onNext(FluxOnAssembly.java:314)

at reactor.core.publisher.Mono.subscribeWith(Mono.java:2668)

at reactor.core.publisher.Mono.subscribe(Mono.java:2629)

at reactor.core.publisher.Mono.subscribe(Mono.java:2604)

at reactor.core.publisher.Mono.subscribe(Mono.java:2582)

at reactor.guide.GuideTests.debuggingActivated(GuideTests.java:727)

Find where the Flux
was inslanlialed (assembly)

Checkpoint()
or full assembly tracing

Checkpoint()

Assembly trace from producer [reactor.core.publisher.MonoSingle]
reactor.core.publisher.Flux.single(Flux.java:5335)
reactor.guide.GuideTests.scatterAndGather(GuideTests.java:689)
reactor.guide.GuideTests.populateDebug(GuideTests.java:702)

Reactor ... Spring

Reactor ...

and do |1 need Spring to use Reactor?

N O phitosorapter YOU dON’T

lReactor 3

is a dependency of
Spring 5

not the other way around

€ springs

Java 8
baseline

reactive

focus

new WED stack
WebFux

@RestController (“/user?”)
public class UserController {

@GetMapping (“/{id}”)
Mono<User> getUser (String 1d)

functional option
for Rouling

Spring Data

reactive reposilories

@GetMapping(“/{1d}”)
Mono<User> getUser (String id) {
return reactiveRepo.findOne(id);

¥

Reactor and the Network

reactor-netty

reactor-netty
builds on Netty to provide
reactive 1/0O

Client/ Server

1CP

Http
and WebJSockels

HttpServer.create(0)
.newHandler ((in, out) -> out
.sendWebsocket((i, o) ->
o.options(opt -> opt.flushOnEach())
.sendString(Flux.just("test")
.delayElementsMillis(100)
.repeat())

.block();

stitt a bit lOW level

reactor-kafka
lopics as
Flux<I>

reactive ADPI
over ‘haftia Producer | Consumer

send(Flux)
into Tafka

Flux receive()
from hafka

(currently in MILESTONE 1)

Questions?

(L

ARAARAAAA

R W N Y

Springfield Plant: copyright FOX

Raised Hand: CCO (via Pixabay)

Checklist: CC-By Crispy (via Flickr)

Robot Devil: copyright FOX

Volume Knob: CCO (via Pixabay)

Camel Shape: CCO (via Pixabay)

Dromedary Shape: CC-By-SA USPN,Whidou (via Wikimedia)
Dam: CC-By-SA Matthew Hatton (via geograph.org.uk)
Cogs: CCO (via publicdomainpictures.net)

Thread Balls: CCO (via Pixabay)

The Fortune Teller: Georges de la Tour (public domain)
Microphone: CCO (via Pexels)

End Sands: CCO (via Pixabay)

logos: Pivotal, Spring, Twitter and Github logo copyright their
respective companies.

