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end-of-day conf slot is best for naps?









Reactive

Programming

101



Reactive

Programming

101

Reacltor 3

typess
operators



Reactive

Programming

101

Reacltor 3

typess
operators

backpressure

and

other beasts



Teactive Reactor 3
101 tyRes :

operators

backp[:awre
other beasts
; ml.
debugging



Reactive Reactor 3

Programming

types:
101 operators
Reactor backp[:awre
and Spl’i ng other beasts
lesting

debumgging



Reactive Reactor 3

Programming

reaclor-neity types s
101 operators
reaclor-hkafka...
Reactor backpegpure
and Spring other beasts

lesting
debugging



Reactive Programming 101

what does it bring to the table?
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how do you achieve that
without losing your mind ?



Reactive Progsramming



composing @synchronous
s event-based sequences,
using non-blocking operators



without sacrifice
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Pull? Push!
(or actually a little bit of Both)



Publisher

Subscriber



Data in Fflux
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produces consumes

push events

interfaces from
Reactive Streams
spec




produces consumes

push events

Subscriber<T>

onNext(T)
onComplete();
onError(Throwable);



0O..N elements
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push events
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Reactor 3

types and operators
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Flux.range(5, 3)
.map(i -> i + 3)
filter(i -> 1 % 2 == 0)
.buffer(3)
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co DFEPER!
async sub-processes with flatMap






flatMap(user -> tweetStream(user))
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flatMap(user -> tweetStream(user))
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o by falling back: Flux#onErrorReturn, Flux#onErrorResumelith
= ...but from a Mono: Mono#otherwiseReturn, Mono#otherwise
o by retrying: retry
= __triggered by a companion control Flux: retryWhen
© by switching to another Flux depending on the error type: switchOnError
* | want to deal with backpressure "enurs"[7l...

© by throwing a special IllegalStateException: Flux#onBackpressureError

o by dropping excess values: Flux#tonBackpressureDrop
= __except the last one seen: Flux#onBackpressurelLatest
o by buffering excess values (bounded or bounded): Flux#onBackpressureBuffer

= ._.and applying a strategy when bounded buffer also overflows: Flux#tonBackpressureBuffer with a

BufferOverflowStrategy

5.6. Time

* | want to associate emissions with a timing (Tuple2<Long, T»)measured...

© since subscription: elapsed

o since the dawn of time (well, computer time): timestamp

* | want my sequence to be interrupted if there’s too much delay between emissions: timeout
* | want to get ticks from a clock, regular time intervals: Flux#interval
* | want to introduce a delay...

© between each onNext signal: delay

o before the subscription happens: delaysubscription

5.7. Splitting a Flux
* | wantto split a Flux<T> into a Flux<Flux<T>>, by a boundary criteria...
o of size: window(int)
= ...with overlapping or dropping windows: window(int, int)
o of time window(Duration)
= __with overlapping or dropping windows: window(Duration, Duration)

o of size OR time (window closes when count is reached or timeout elapsed): window(int, Duration)

& much
more...



“elements of functional
progsramming”
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push data as fast as possible

Subscriber

Publisher




subscribe

———————————— Subscriber

with small request
(eg. 1)







Subscriber

request more
(eg. 2)
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macro FUSION
avoids unnecessary request back-and-forth



micro FUSION
share internal structures for less allocation



ing .

Athread




lkeactor

is
agnostic



however it
facilitates awitchi



Schedulers



Schedulers
elastic, parallel, single, timer-...



publishOn
switch rest of the flux on a thread



subscribeOn
malie the subacription and request happen
on a particular thread
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Testing & Debugging

in an asynchronous world



Testing a Publisher
StepVerifier



Testing a Publisher
with Virtual Time supportl



Simulate a source
TestPublisher



Debugging Issues
stacktraces get hard to- decipher



usually just show
where Subacription happens



java.lang.IndexOutOfBoundsException: Source emitted more than one item

at reactor.core.publisher.MonoSingle$SingleSubscriber.onNext(MonoSingle.java:120)

at
reactor.core.publisher.FluxOnAssembly$0OnAssemblySubscriber.onNext(FluxOnAssembly.java:314)

at reactor.core.publisher.Mono.subscribeWith(Mono.java:2668)

at reactor.core.publisher.Mono.subscribe(Mono.java:2629)

at reactor.core.publisher.Mono.subscribe(Mono.java:2604)

at reactor.core.publisher.Mono.subscribe(Mono.java:2582)

at reactor.guide.GuideTests.debuggingActivated(GuideTests.java:727)



Find where the Flux
was inslanlialed (assembly)



Checkpoint()
or full assembly tracing



Checkpoint()




Assembly trace from producer [reactor.core.publisher.MonoSingle]
reactor.core.publisher.Flux.single(Flux.java:5335)
reactor.guide.GuideTests.scatterAndGather(GuideTests.java:689)
reactor.guide.GuideTests.populateDebug(GuideTests.java:702)



Reactor ... Spring



Reactor ...

and do |1 need Spring to use Reactor?




N O phitosorapter YOU dON’T



lReactor 3

is a dependency of
Spring 5

not the other way around



€ springs



Java 8
baseline



reactive

focus



new WED stack
WebFux



@RestController (“/user?”)
public class UserController {

@GetMapping (“/{id}”)
Mono<User> getUser (String 1d)



functional option
for Rouling



Spring Data

reactive reposilories



@GetMapping(“/{1d}”)
Mono<User> getUser (String id) {
return reactiveRepo.findOne(id);

¥



Reactor and the Network

reactor-netty



reactor-netty
builds on Netty to provide
reactive 1/0O



Client/ Server



1CP



Http
and WebJSockels



HttpServer.create(0)
.newHandler ((in, out) -> out
.sendWebsocket((i, o) ->
o.options(opt -> opt.flushOnEach())
.sendString(Flux.just("test")
.delayElementsMillis(100)
.repeat())

.block();



stitt a bit lOW level






reactor-kafka
lopics as
Flux<I>



reactive ADPI
over ‘haftia Producer | Consumer



send(Flux)
into Tafka



Flux receive()
from hafka



(currently in MILESTONE 1)
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