
Reactor 3

the Reactive foundation for
the JVM

About me
&

how to get in touch

@SimonBasle

First
a

Survey

Who Here Uses...

Who Here Uses...
Java 8

Who Here Uses...
Java 8

RxJava

Who Here Uses...
Java 8

RxJava

Reactive Streams

Who Here Thinks...

Who Here Thinks...
Reactor is a fork of Atom editor

Who Here Thinks...
Reactor is a fork of Atom editor

Reactor is a new Spring project

Who Here Thinks...
Reactor is a fork of Atom editor

Reactor is a new Spring project

Reactor is some Asynchronous stuff

Who Here Thinks...
Reactor is a fork of Atom editor

Reactor is a new Spring project

Reactor is some Asynchronous stuff

end-of-day conf slot is best for naps?

the Agenda

101

Reactive
Programming

101

Reactive
Programming

types &
operators

Reactor 3

101

Reactive
Programming

types &
operators

Reactor 3

other beasts

backpressure
and

101

Reactive
Programming

types &
operators

Reactor 3

debugging

testing
and

other beasts

backpressure
and

101

Reactive
Programming

types &
operators

Reactor 3

and Spring
Reactor

debugging

testing
and

other beasts

backpressure
and

101

Reactive
Programming

types &
operators

Reactor 3

and Spring
Reactor

debugging

testing
and

reactor-netty

other beasts

backpressure
and

reactor-kafka...

Reactive Programming 101
what does it bring to the table?

WHY?

WHY?

because blocking is evil

sync/blocking

main thread processing

resumesI/O

! app does

nothing

sync/blocking

main thread processing

resumesI/O

BAD

! app does

nothing

async & blocking

main thread wait &

join

! new
threads,

costly

! complex

async & blocking

main thread wait &

join

! new
threads,

costly

! complex
BAD

async & nonblocking

“event loop”

in non-blocking

processing

chunks

no more threads

than needed

how do you achieve that
without losing your mind ?

Reactive Programming

Composing asynchronous
& event-based sequences,

using non-blocking operators

“

”

without sacrifice

without sacrifice

Callbacks ?

Futures ?
easy to block

hard to compose

callback hell !not readable

Pull? Push!

Pull? Push!

Pull? Push!
(or actually a little bit of Both)

vs
Iterable

-

Iterator

Publisher
-

Subscriber

Data in Flux

Publisher Subscriber
push events

produces consumes

feedback

interfaces from
Reactive Streams

spec

Publisher Subscriber

feedback

consumes

push events

produces

Publisher Subscriber
push events

produces consumes

feedback

Subscriber<T>

onNext(T)
onComplete();
onError(Throwable);

Publisher Subscriber

produces consumes

feedback

0..N elements
+

0..1 (complete | error)

Publisher Subscriber
push events

produces consumes

feedback

backpressure

Publisher Subscriber
push events

produces consumes

feedback

can I have an
API though?

Publisher Subscriber
push events

produces consumes

feedback

Reactor 3
types and operators

Flux<T>
for 0..N elements

Mono<T>
for at most 1 element

Reactive Streams
all the way

focus on Java 8

focus on Java 8
Duration, CompletableFuture, Streams

an Rx-inspired API

with a vocabulary of operators similar to RxJava...

an Rx-inspired API

...but not exactly the same

Flux/Mono
generator operator

operator

operator

nothing
happens
until you

subscribe

Flux/Mono
generator

Subscriber

operator

operator

operator

nothing
happens
until you

subscribe

Flux/Mono
generator

Subscriber

operator

operator

operator

per
Subscription

state
Sub

Sub

Sub

Flux/Mono
generator

Subscriber

operator

operator

operator

data
flows

Sub

Sub

Sub

examples

Flux.range

Subscriber

map

filter

buffer

 Flux.range(5, 3)
 .map(i -> i + 3)
 .filter(i -> i % 2 == 0)
 .buffer(3)

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

Flux.range

Subscriber

map

filter

buffer

 Flux.range(5, 3)
 .map(i -> i + 3)
 .filter(i -> i % 2 == 0)
 .buffer(3)

5, 6, 7 |
8, 9, 10 |
8, 10 |
 [8,10]|

Flux.from

Subscriber

map

filter

retry

Publisher from
HTTP reactive

client

Flux.from

Subscriber

map

filter

retry

Publisher from
HTTP reactive

client

Flux.from

Subscriber

map

filter

retry

Publisher from
HTTP reactive

client
resubscribe

go DEEPER!
async sub-processes with flatMap

flatMap(user -> tweetStream(user))

flatMap(user -> tweetStream(user))

flatMap(user -> tweetStream(user))

flatMap(user -> tweetStream(user))

& much
more...

“elements of functional
programming”

BACKPRESSURE
and other beasts

Publisher Subscriber
subscribe

Publisher Subscriber
push data as fast as possible

Publisher Subscriber
subscribe

with small request
(eg. 1)

Publisher Subscriber
1 onNext

Publisher Subscriber

request more
(eg. 2)

Publisher Subscriber
2 onNext

Publisher Subscriber

backpressure

other ways of dealing with backpressure

eg. drop, buffer...

internal
optimisations

macro FUSION
avoids unnecessary request back-and-forth

micro FUSION
share internal structures for less allocation

threading
contexts

Reactor
is

agnostic

however it
facilitates switching

Schedulers

Schedulers
elastic, parallel, single, timer...

publishOn
switch rest of the flux on a thread

subscribeOn
make the subscription and request happen

on a particular thread

Flux/Mono
generator

operator

subscribeO
n

operator

publishOn

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

Flux/Mono
generator

operator

subscribe
On

operator

publish
On

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

Flux/Mono
generator

operator

subscribeO
n

operator

publishOn

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

Flux/Mono
generator

operator

subscribeO
n

operator

publishOn

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

Flux/Mono
generator

operator

subscribeO
n

operator

publishOn

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

Flux/Mono
generator

operator

subscribeO
n

operator

publishOn

operator

operator Subscriber

Sub

Sub

Sub

Sub

Sub

Sub

lock free operators

lock free operators
and Work Stealing

cpu 1

cpu 2
cpu 3

cpu 4

cpu 5

Testing & Debugging
in an asynchronous world

Testing a Publisher
StepVerifier

Testing a Publisher
with Virtual Time support

Simulate a source
TestPublisher

Debugging Issues
stacktraces get hard to decipher

usually just show
where Subscription happens

java.lang.IndexOutOfBoundsException: Source emitted more than one item
at reactor.core.publisher.MonoSingle$SingleSubscriber.onNext(MonoSingle.java:120)
at

reactor.core.publisher.FluxOnAssembly$OnAssemblySubscriber.onNext(FluxOnAssembly.java:314)
...

...
at reactor.core.publisher.Mono.subscribeWith(Mono.java:2668)
at reactor.core.publisher.Mono.subscribe(Mono.java:2629)
at reactor.core.publisher.Mono.subscribe(Mono.java:2604)
at reactor.core.publisher.Mono.subscribe(Mono.java:2582)
at reactor.guide.GuideTests.debuggingActivated(GuideTests.java:727)

Find where the Flux
was instantiated (assembly)

Checkpoint()
or full assembly tracing

costly!

Checkpoint()
or full assembly tracing

Assembly trace from producer [reactor.core.publisher.MonoSingle] :
reactor.core.publisher.Flux.single(Flux.java:5335)
reactor.guide.GuideTests.scatterAndGather(GuideTests.java:689)
reactor.guide.GuideTests.populateDebug(GuideTests.java:702)

Reactor and Spring

Reactor and Spring
and do I need Spring to use Reactor ?

NO philosoraptor you don’t

Reactor 3
is a dependency of

Spring 5
not the other way around

5

Java 8
baseline

reactive
focus

new WEB stack
WebFlux

@RestController(“/user”)
public class UserController {

 @GetMapping(“/{id}”)
 Mono<User> getUser(String id) {...}

}

functional option
for Routing

Spring Data
reactive repositories

 @GetMapping(“/{id}”)
 Mono<User> getUser(String id) {
 return reactiveRepo.findOne(id);
 }

Reactor and the Network
reactor-netty

reactor-netty
builds on Netty to provide

reactive I/O

Client / Server

TCP
or udp

Http
and WebSockets

HttpServer.create(0)
 .newHandler((in, out) -> out
 .sendWebsocket((i, o) ->
 o.options(opt -> opt.flushOnEach())
 .sendString(Flux.just("test")
 .delayElementsMillis(100)
 .repeat())
)
)
.block();

still a bit low level

still a bit low level

reactor-kafka
topics as
Flux<T>

reactive API
over Kafka Producer / Consumer

send(Flux)
into Kafka

Flux receive()
from Kafka

(currently in MILESTONE 1)

Questions?

Thanks!

Credits
● Springfield Plant: copyright FOX
● Raised Hand: CC0 (via Pixabay)
● Checklist: CC-By Crispy (via Flickr)
● Robot Devil: copyright FOX
● Volume Knob: CC0 (via Pixabay)
● Camel Shape: CC0 (via Pixabay)
● Dromedary Shape: CC-By-SA USPN,Whidou (via Wikimedia)
● Dam: CC-By-SA Matthew Hatton (via geograph.org.uk)
● Cogs: CC0 (via publicdomainpictures.net)
● Thread Balls: CC0 (via Pixabay)
● The Fortune Teller: Georges de la Tour (public domain)
● Microphone: CC0 (via Pexels)
● End Sands: CC0 (via Pixabay)
● logos: Pivotal, Spring, Twitter and Github logo copyright their

respective companies.

